Qué es el adversarial machine learning y que implicaciones tiene en ciberseguridad

5/5 - (2 votos)

Los sistemas de Inteligencia de Arficial (IA), y algunas de sus disciplinas más populares, como el Machine Learning, son cada vez más usados en las organizaciones. Si bien, estos sistemas son susceptibles de sufrir ataques de ciberseguridad que afecten al funcionamiento de los algoritmos. Esto puede acarrear graves consecuencias. Por ello, ha surgido el Adversarial Machine Learning, que es la rama de la Inteligencia Artificial que se encarga de verificar la seguridad de los algoritmos y de sus capacidades de predicción.

Adversarial machine learning e Inteligencia Artificial

Como hemos visto, el Adversarial Machine Learning surge del Machine Learning que, a su vez, es una técnica de IA. El Machine Learning se basa en implementar algoritmos para que un sistema aprenda de forma autónoma. Si bien, estos algoritmos pueden sufrir ataques malintencionados. Por ello, el Adversarial Machine Learning se encarga de estudiar posibles manipulaciones o datos de entrada a un algoritmo entrenado, que un atacante ha modificado para provocar que el algoritmo cometa un error en la predicción. A partir de aquí, tendrán que idearse métodos de defensa también basados en estas técnicas.

banner en máster en gestión de riesgos digitales y ciberseguridad

Un ejemplo de ataque basado en Adversarial Machine Learning puede ser el de un sistema de reconocimiento de imágenes que, instalado en el coche, permite predecir las señales de tráfico que van a aparecer en los próximos kilómetros. En este caso, el atacante puede modificar el algoritmo de ese sistema de forma maliciosa, para que la predicción de las señales no sea correcta. Se trata de un ejemplo, pero también pueden encontrarse ataques similares en sistemas utilizados por coches autónomos, lo que puede suponer un peligro real.

Un problema importante de ciberseguridad

Este tipo de problemas ya están causando graves consecuencias de seguridad y son un preocupación y potencial amenaza para cualquier organización que implemente sistemas basados en IA en producción. Y es que, resulta complejo diseñar técnicas defensivas para algoritmos de IA que permitan protegerlos de ataques basados en Adversarial Machine Learning. Este tipo de riesgos deben analizarse a la hora de implantar un sistema de estas características en una organización.

Cabe tener en cuenta que las técnicas de ataque de Adversarial Machine Learning no se aplican sólo a sistemas de reconocimiento de imágenes. También se pueden utilizar para manipular cualquier otro tipo de información de entrada y que el sistema de IA no la identifique adecuadamente.

Junto a las técnicas de ataque, también existen técnicas defensivas de Adversarial Machine Learning, como el Adversarial Training o el Defensive Destillation.

Máster en Ciberseguridad y Riesgos Digitales

Los fundamentos de seguridad en sistemas de Inteligencia Artificial son estudiados en profundidad en el Máster en Ciberseguridad y Riesgos Digitales de EALDE Business School. Se trata de un máster 100% online, dirigido a profesionales que quieran especializarse en la gestión de problemas de seguridad informática relacionado con las nuevas tecnologías. El programa cuenta con una serie de becas disponibles y plazas limitadas.

Solicitar más información sobre el Máster en Ciberseguridad y Riesgos Digitales haciendo clic en el siguiente enlace:

Si quieres ampliar conocimientos relativos a la ciberseguridad en Inteligencia Artificial te recomendamos visionar el siguiente vídeo:

logo EALDE Business School
Máster en Ciberseguridad

Fórmate con los mejores profesionales del sector

Infórmate aquí
Descarga este eBook gratis

El rol del Big Data en la Ciberseguridad

Entradas recientes

Principales problemas de ciberseguridad asociados a los NFTs

¿Existen problemas de ciberseguridad dentro del mundo NFTs? Al tratarse de una tecnología nueva que de por sí está incompleta y que, a su vez, se desarrolla en base a distintos estándares elaborados por diferentes organismos y entidades alrededor del mundo, la...

La demanda de talento en Ciberseguridad doblará a la oferta en 2024

Varios estudios prevén que la demanda de talento en ciberseguridad seguirá superando al número de profesionales cualificados hasta el fin de la actual década. Según la CNN, hay más de 3 millones de empleos vacantes en ciberseguridad a nivel global, muchos de ellos en...

Sobre el autor

EALDE Business School nace con vocación de aprovechar al máximo las posibilidades que Internet y las nuevas tecnologías brindan a la enseñanza. Ofrece a sus alumnos la posibilidad de cursar, desde el lugar en el que se encuentren, estudios de posgrado en materia de gestión de empresas de la misma forma que harían si los cursos se siguiesen presencialmente en una escuela tradicional.
Logo EALDE

Posts relacionados

Logo EALDE

Se el primero en comentar

0 comentarios

Enviar un comentario

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.